publicintlongestPalindromeSubseq(String s) { if (s == null || s.length() == 0) { return0; } intn= s.length(); return palSubseq(s, 0, n - 1); }
privateintpalSubseq(String s, int lo, int hi) { if (lo == hi) { return1; } if (lo > hi) { return0; } if (s.charAt(lo) == s.charAt(hi)) { return palSubseq(s, lo + 1, hi - 1) + 2; } else { return Math.max(palSubseq(s, lo + 1, hi), palSubseq(s, lo, hi - 1)); } }
Time: $O(2^N)$ in the worst case when $T(N) = 2T(N - 1)$. In the best case, it is $O(N)$. Space: $O(N)$
DP (memoization)
Based on the brute-force solution, we found repeated calculation. We can use memoization to optimize the time complexity.
publicintlongestPalindromeSubseq(String s) { if (s == null || s.length() == 0) { return0; } intn= s.length(); int[][] mem = newint[n][n]; // init for (inti=0; i < n; ++i) { for (intj=0; j < n; ++j) { mem[i][j] = -1; } } return palSubseq(s, 0, s.length() - 1, mem); }
privateintpalSubseq(String s, int lo, int hi, int[][] mem) { if (lo == hi) { return1; } if (lo > hi) { return0; } if (s.charAt(lo) == s.charAt(hi)) { if (mem[lo + 1][hi - 1] == -1) { mem[lo + 1][hi - 1] = palSubseq(s, lo + 1, hi - 1, mem); } return mem[lo + 1][hi - 1] + 2; } else { if (mem[lo + 1][hi] == -1) { mem[lo + 1][hi] = palSubseq(s, lo + 1, hi, mem); } if (mem[lo][hi - 1] == -1) { mem[lo][hi - 1] = palSubseq(s, lo, hi - 1, mem); } return Math.max(mem[lo + 1][hi], mem[lo][hi - 1]); } }
Time: $O(N^2)$ Space: $O(N^2)$
DP (2D)
Define: We denote dp[i][j] as the longest palindromic subsequence’s length in the substring s(i, j).
Recurrence:
If s[i] == s[j], then dp[i][j] = dp[i + 1][j - 1] + 2.
Else, then dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]).
Initialization: Check out the base cases in the brute-force solution.
Note: Determining ranges of i and j would be easy if you pick a starting point in the graph to get some intuition. For example, in this case j starts from i + 1.