Reference: LeetCode
Difficulty: Medium
Problem
Given a non negative integer number
num
. For every numbersi
in the range0 ≤ i ≤ num
calculate the number of 1’s in their binary representation and return them as an array.
Example:
1 | Input: 2 |
Follow up:
- It is very easy to come up with a solution with runtime $O(n \times \text{sizeof}(\text{int}))$. But can you do it in linear time $O(n)$ / possibly in a single pass?
- Space complexity should be $O(n)$.
- Can you do it like a boss? Do it without using any builtin function like
__builtin_popcount
in C++ or in any other language.
Analysis
Methods:
Brute-Force
- For each value, count the number of bits.Time: $O(NM)$. $M$ is the number of bits.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16public int[] countBits(int num) {
int[] ret = new int[num + 1];
for (int i = 0; i <= num; ++i) {
ret[i] = numberOfOneBits(i);
}
return ret;
}
private int numberOfOneBits(int n) {
int count = 0;
while (n != 0) {
count += 1;
n = n & (n - 1);
}
return count;
}
Space: $O(N)$
- For each value, count the number of bits.
DP + Least Significant Bit
- We can observe that for a digit
abcd
in binary form, a transition function could be: dp[abcd] = dp[abc] + dp[d] = dp[abc >>> 1] + (d & 1)
.Time: $O(N)$1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16// val binary #num
// 0 0 0 dp[0] = dp[00] = 0
// 1 1 1 dp[1] = dp[01] = 1
// 2 10 1 dp[2] = dp[10] = 1
// 3 11 2 dp[3] = dp[11] = 2 = dp[01] + dp[10] = 1 + 2
// 4 100 1 dp[4] = dp[100] = 1
// 5 101 2 dp[5] = dp[101] = 2 = dp[10] + dp[1]
// 6 110 2 dp[6] = dp[110] = 2 = dp[11] + dp[0]
// 7 111 3 dp[7] = dp[111] = 3 = dp[val >>> 1] + dp[val & 1]
public int[] countBits(int num) {
int[] dp = new int[num + 1];
for (int val = 0; val <= num; ++val) {
dp[val] = dp[val >>> 1] + (val & 1); // dp[val & 1]
}
return dp;
}
Space: $O(N)$
- We can observe that for a digit
DP + Most Significant Bit
- I think this one is less elegant.
- Reference:linkTime: $O(N \times \text{sizeof}(int))$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15public int[] countBits(int num) {
int[] dp = new int[num + 1];
for (int i = 0; i <= num; ++i) {
int msb = locateMSB(i);
dp[i] = dp[i ^ msb] + ((msb > 0) ? 1 : 0); // turn off the msb
}
return dp;
}
public int locateMSB(int val) {
while ((val & (val - 1)) != 0) {
val &= (val - 1);
}
return val;
}
Space: $O(N)$
DP + Last Set Bit
- With the same logic as previous approaches, we can also do it with the last set bit. For
x
, we have: dp[x] = dp[x & (x - 1)] + 1
- Note: loop should start from
1
sincedp[0] = dp[0 & -1] + 1
=1
.Time: $O(N)$1
2
3
4
5
6
7public int[] countBits(int num) {
int[] dp = new int[num + 1];
for (int val = 1; val <= num; ++val) {
dp[val] = dp[val & (val - 1)] + 1;
}
return dp;
}
Space: $O(N)$